

Hydro-Cylinders

with optional stroke end cushioning, double acting, max. operating pressure 200 bar

Hydro-cylinder without stroke end cushioning

Description

Double-acting hydro-cylinders with connecting dimensions according to DIN ISO 6020. Only exception is the shorter overall length.

On request also available in the longer version as per DIN ISO 60 20.

The piston rod is provided with an external thread.

For fixing, the front and back part of the body is provided with 4 internal threads. The adjustable stroke end cushioning avoids a too hard stop of the piston in the cylinder body with the following applications:

- 1. High piston speed
- 2. Additional load at the piston rod
- 3. If an external stop cannot be provided to compensate the additional load.

Functioning - Stroke end cushioning

Just before the stroke end of the piston, the cushioning spigot enters into the cushioning disc and reduces the flow rate in the return line and thereby also the piston speed. The residual speed can be adjusted in certain limits by an adjustable flow control valve.

Material

Cylinder body: free-cutting steel, galvanized Cylinder tube: HP tube

Piston rod:	high alloy steel,
	chromium-plated
Seals:	NBR or FKM

Important notes

When selecting the hydro-cylinder it is imperative to consider the maximum admissible lateral force and buckling load.

Operating conditions, tolerances and other data see data sheet A 0.100.

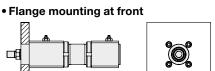
Hydro-cylinder with stroke end cushioning

Advantages

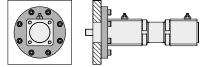
- Adjustable stroke end cushioning as an option
- Max. piston speed 0.5 m/s
- Low wear and friction Glydring seals
- High service life due to the use of guide rings at the piston and the piston rod
- Negligible leakage by double sealing piston rod
- Piston rod induction hardened and chromium-plated
- Effective wiper seal
- Self-centring cushioning discs with relief valve function for unthrottled cylinder start
- Fixing thread and centring spigot at both cylinder heads allow mounting of non standard accessories
- Particularly suitable for fixture building by direct mounting on cylinder head (small pitch circle dia.) and accurate centring
- Compact design

Accessories

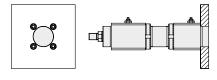
Flange for fixing

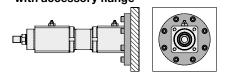

The flange allows screwing on of the hydrocylinder from the side of the cylinder (see page 3 and data sheet G 3.810).

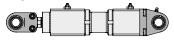
Spherical bearing


As accessories the following spherical bearings can be delivered (see data sheet G 3.810). A bearing block, which is fixed at the cylinder bottom with socket head cap screws.

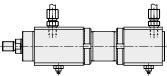
A rod end bearing, which is screwed onto the external thread of the piston rod and then locked with the piston rod.


Fixing possibilities

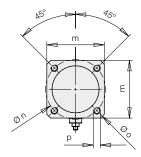

• Flange mounting at front with accessory flange

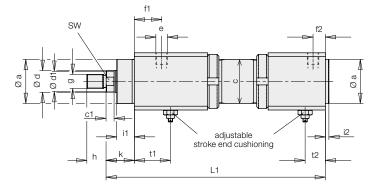

• Flange mounting at rear

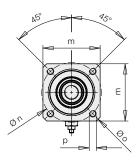
• Flange mounting at rear with accessory flange



• With accessories rod end bearing and bearing block




Hydraulic connecting possibilities


Pipe thread

Dimensions Technical data

Piston Ø D Rod Ø d *)		[mm] [mm]	25 16	32 20	40 25	50 32	63 40	80 50
Nominal force	Forward thrust	[kN]	9.8	16	25	39.2	62.3	100.5
at 200 bar	Pull thrust	[kN]	5.7	9.8	15.3	23.1	37.2	61.2
Piston area		[cm ²]	4.91	8.04	12.56	19.63	31.17	50.26
Annulus area		[cm ²]	2.89	4.90	7.65	11.59	18.61	30.63
Cushioning stroke		[mm]	16	16	20	25	32	40
L		[mm]	38	44	52	65	80	97
L1 = stroke +		[mm]	108 (150)	121 (170)	149 (190)	162 (205)	189 (224)	226 (250)
L2 = stroke +		[mm]	120 (162)	137 (186)	165 (206)	182 (225)	214 (249)	258 (282)
L3 = stroke +		[mm]	140 (178)	162 (206)	195 (231)	219 (257)	259 (289)	313 (332)
Øaf7		[mm]	32	40	50	60	70	85
Øc		[mm]	35	42	50	60	75	95
Ø d1 x c1		[mm]	15x9	19x8	24x9	31x10	39x12	49x13
е			G 1/4	G 1/4 (3/8)	G 1/4 (1/2)	G 1/2	G 1/2 (3/4)	G 1/2 (3/4)
f1 *)		[mm]	21	22.5	31	34	41	46
f 2 *)		[mm]	11	11	14	17	22	28
g		[mm]	M 12 x 1.25	M 14 x 1.5	M 16 x 1.5	M 20 x 1.5	M 27 x 2	M 33 x 2
ĥ		[mm]	16	18	22	28	36	45
i1		[mm]	15	20 *)	20 *)	24	29	37 *)
i2		[mm]	3	3	4	4	4	4
k		[mm]	28	32	32	38	45	54
m *)		[mm]	50	55	65	80	95	115
Øn		[mm]	45	58	68	82	95	115
Øo*)		[mm]	61	73	86	104	119	144
p x depth of thread		[mm]	M 6 x 12	M 8 x 15	M 8 x 15	M 10 x 20	M 12 x 20	M 16 x 28
Ør		[mm]	90	110	125	150	170	195
S		[mm]	12	16	16	20	25	32
t1		[mm]	25	29	41	44	54	60
t2		[mm]	15	17	23	27	35	42
Øu		[mm]	75	92	106	126	145	165
Øv		[mm]	7	9	9	11	14	18
SW		[mm]	13	17	22	27	36	46
Minimum stroke ± 1.5		[mm]	70	70	60	70	80	80
Maximum stroke ± 1.5		[mm]	750	950	1200	1200	1200	1200

Important note:

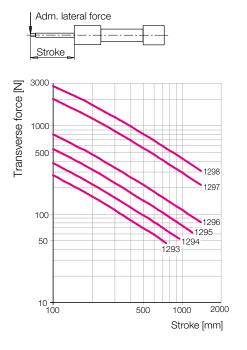
For stroke selection consider buckling load and transverse force on page 3.

Part no.

3 = piston Ø 25 4 = piston Ø 32 5 = piston Ø 40 6 = piston Ø 50 7 = piston Ø 63 8 = piston Ø 80	1 X X X X X Stroke in mm (example stroke = 85 mm: 0085) Attention: consider minimum and maximum stroke (see chart) Overlengths on request
	 • = seal made of NBR, without cushioning 1 = seal made of FKM, without cushioning 2 = seal made of NBR, with cushioning 3 = seal made of FKM, with cushioning

Dimensions in () as per DIN ISO 6020 available on request Dimensions marked by *) are not as per DIN ISO 6020

Example of ordering


Hydro-cylinder, piston diameter = 32 mm, with FKM seals, without cushioning, stroke = 85 mm

Part number: 1294 11 0085

2

Technical data Accessories

Admissible transverse force with extended piston rod

Buckling load Flange mounting at front

1200

1100

1000 900

800

700

600

500

400

300

200

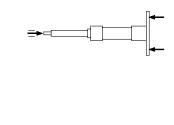
100 0

0

50

100

150

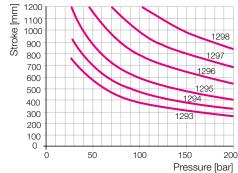

Pressure [bar]

Stroke [mm]

Limit values for stroke and operating pressures at buckling load (safety against buckling = 3.5)

Buckling load Flange mounting at rear

Limit values for stroke and operating pressures at buckling load (safety against buckling = 3.5)

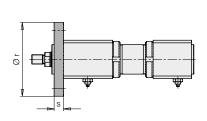


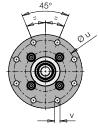
1295

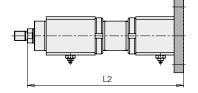
1294

1293

200

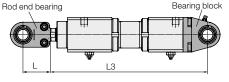



Important note:


Transverse forces have to be avoided, if possible, otherwise life of piston and piston rod guide are reduced.

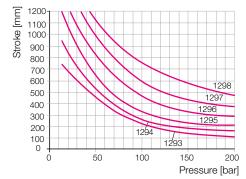
Accessories

Flange for fixing



Part numbers for accessories

Size of hydro-cylinder	1293	1294	1295	1296	1297	1298
Flange	1283910	1284910	1285910	1286910	1287910	1288910
Rod end bearing	3890023	3890012	3890017	3890014	3890018	3890025
Bearing block	1293940	1294940	1295940	1296940	1297940	1298940


Spherical bearing

Dimensions, guide lines for application and other data see data sheet G 3.810.

Buckling load for spherical bearings

Limit values for stroke and operating pressures at buckling load (safety against buckling = 3.5)

