Model type face mounting

PM Line - Technical data

86 611..H00 - face mounting 14.120.xx.2xx

24 VDC, 205 VDC
IP 00
F (B for 14.120.xx.2xx)
0.01 to 120 Nm

Organic friction pad
Please observe the general information on data sheets and the respective operating manuals. Design subject to change.

Size		Transmissible torque M_{4} [Nm]	Max. rotational speed $\mathrm{n}_{\text {max }}$ [min^{-1}]	Max. switch. capacity $P_{\text {max }}$ [kJ/h]	Max. switching energy $(z=1)$ $\begin{aligned} & \mathbf{W}_{\text {max }} \\ & {[\mathrm{kJ}]} \end{aligned}$	Rated power$\mathbf{P}_{N_{n}}$[W]	Times		Inertia moment armature and flange hub J [kgcm^{2}]	
$\begin{aligned} & \text { 오 } \\ & \text { + } \\ & \stackrel{1}{6} \\ & \AA \end{aligned}$							Coupling time (with parallel varistor t_{1} [ms]	Separation time t_{2} [ms]		
	011)	0.01	20000	-	-	1.8	-	-	0.0006	0.02
02		0.1	49000	0.006	0.0003	2.5	12	16	0.0018	0.029
	021)	0.08	16000	-	-	3.3	-	-	0.0056	0.09
03		0.4	16000	0.2	0.01	6.2	13	27	0.010	0.07
	03	0.6	12000	-	-	10	-	-	0.018	0.1
04		2.2	12000	4	0.2	8	14	28	0.12	0.19
06		3.2	10000	7	0.35	12	19	29	0.38	0.3
07		11	10000	8	0.4	16	20	29	1.06	0.6
09		22	10000	11	0.55	18	25	50	3.6	1.1
11		40	10000	17	0.85	24	25	73	9.5	1.4
14		80	8000	29	1.45	35	53	97	31.8	4.1
16		120	8000	31	1.55	37	80	150	57.5	6

[^0]
Model type flange mounting

PM Line - Technical data

86 621..H00 - flange mounting 14.120.xx.1xx

24 VDC, 205 VDC
IP 00
F (B for 14.120.xx.1xx)
0.01 to 120 Nm

Organic friction pad
Please observe the general information on data sheets and the respective operating manuals. Design subject to change.

Size		Transferable torque M_{4} [Nm]	Max. rotational speed$\begin{aligned} & \mathrm{n}_{\max } \\ & {\left[\mathrm{min}^{-1}\right]} \end{aligned}$	Max. switch. capacity$\begin{aligned} & P_{\max } \\ & {[\mathrm{kJ} / \mathrm{h}]} \end{aligned}$	Max. switching energy ($Z=1$)$\begin{aligned} & \mathbf{W}_{\text {max }} \\ & {[k J]} \end{aligned}$	Rated power$\begin{aligned} & P_{N} \\ & {[W]} \end{aligned}$	Times		Inertia moment armature and flange hub J [kgcm^{2}]	Weight m [kg]
$\begin{aligned} & \text { 웅 } \\ & \text { ! } \\ & \dot{8} \\ & \text { © } \end{aligned}$							Coupling time (with parallel varistor)	Separation time		
	$\frac{\text { ¢ }}{\text { ¢ }}$						\mathbf{t}_{1} [ms]	$\begin{aligned} & \mathrm{t}_{2} \\ & {[\mathrm{~ms}]} \end{aligned}$		
03	01 ${ }^{1)}$	0.01	20000	-	-	1.8	-	-	0.0006	0.02
		0.4	16000	0.2	0.01	6.2	13	27	0.010	0.07
	03	0.6	12000	-	-	10	-	-	0.018	0.12
04		2.2	12000	4	0.2	8	14	28	0.12	0.19
	05	4	10000	-	-	12	-	-	0.22	0.45
06		3.2	10000	7	0.35	12	19	29	0.38	0.3
07		11	10000	8	0.4	16	20	29	1.06	0.6
09		22	10000	11	0.55	18	25	50	3.6	1.1
11		40	10000	17	0.85	24	25	73	9.5	1.4
14		80	8000	29	1.45	35	53	97	31.8	4.1
16		120	8000	31	1.55	37	80	150	57.5	6

${ }^{1)}$ Pure holding brake

Device dimensions

PM Line - Technical data

Type 86 611[02-16]H00 for face mounting
Type 86 621[02-16]H00 for flange mounting

(1) Strand diameter $\times\left[\mathrm{mm}^{2}\right]$

Size	d	$\mathrm{d}_{1 \text { n }}$	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	b	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	t	x [mm^{2}]
$01{ }^{1)}$	14	14	4	8.5	-	-	-	14	-	2	-	-	-	M1.6	0.15
02	19.3	19	5	16.4	-	-	-	20.9	-	4	-	-	-	M2	0.09
$02{ }^{1)}$	23.5	23.5	9	16	-	-	-	17.5	-	-	-	-	-	M3	0.25
03	28	28	9	22	33.5	2.6	-	16	16	3.3	1.5	30	-	M2	0.25
$03{ }^{11}$	31	31	13	24	36	2.9	42 h 10	23.7	23.7	3	3	-	-	M3	0.25
04	39.5	40	13	32.5	54	3.5	-	21	23	4.9	2	45	-	M2	0.25
$05{ }^{11}$	54.5	-	26	-	58	3.4	65 h 9	-	40.2	2	2	-	-	-	0.25
06	56	53	24	48	65	4.5	75 h8	20.8	20.8	3	3.1	-	28	M3	0.25
07	70	66.5	30	61	79.5	5.5	90 h 8	25.3	25.3	3.5	3.5	-	35	M3	0.25
09	90	85.5	40	75	102	6.5	115 h8	26.7	26.7	3.5	3.5	-	45	M3	0.25
11	110	104	50	90	121	6.5	132 h 8	30.7	30.7	5	5	-	-	M4	0.62
14	140	134	70	120	151	6.5	162 h8	37.2	37.2	6.5	6.5	-	-	M5	0.96
16	160	160	80	120	175	9	190 h 8	43.2	43.2	12	7	-	-	M5	0.62

${ }^{\text {1) }}$ Device dimensions for type 14.120.xx. 2 xx and xx 14.120.xx. 1 (without illustrations - drawings on demand)
Dimensions in mm

Armature dimensions

Type 200

Hole pattern for armature reception type 200

Size 04

Size 06... 16

Type 300

Type 400

Connecting part out of non-magnetizable material
Cut out for spring segments $\varnothing \mathrm{d}_{10}$ to $\varnothing \mathrm{d}_{11}$; depth $=\mathrm{b}_{8}{ }^{+0,05}$.

Size	d_{7}	d_{8}	d_{9}	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}	d_{16}	d_{17}	b_{6}
$01^{3)}$	14	-	-	-	-	-	-	$1.5 / 3$	-	-	4.6	1.5
02	18.6	-	-	-	-	-	-	$3^{1)} / 4^{2)}$	10.5	-	-	1
$02{ }^{3)}$	23	14.5	8	-	-	4.5	-	$4 / 5$	9.8	-	-	2
03	28.5	-	-	-	-	-	-	$4^{1)} / 8^{2)}$	14			2
$03{ }^{3)}$	31	19.5	12.5	-	-	5	-	5/8	13			2.3
04	39.5	29	17	16	37	7	7	$6^{1)} / 8^{2)}$	16			4.9
$05^{3)}$	54	38	29	-	-	6.5	-	10/15	24			2.8
06	56	46	28	35	54	7	7	$6^{1)} / 15^{2)}$	24			3
07	70	60	37	46	68	8.5	8.5	$10^{1)} / 22^{2)}$	30			3.5
09	90	76	46	60	88	10.5	10.5	$10^{1)} / 30^{2)}$	40			4
11	110	95	59	78	108	12	12	$15^{1)} / 35^{2)}$	50			5
14	140	120	75	98	136	16	16	$20^{1)} / 48^{2)}$	70			6.5
16	160	135	83	113	156	16	16	$20^{1)} / 62^{2)}$	79			7

Size	b_{7}	b_{8}	b_{9}	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}	s	t_{1}	t_{2}
$01^{3)}$	-	-	-	-	7	-	3.7	-	7	-	0.09 ± 0.01	-	-
02	-	-	6.1	3.9	7.1	1.6	-	-	-	-	$0.1 \pm \pm 02$	-	2x M2.5
$02{ }^{3)}$	-	-	7	4.1	9.1	2.5	-	-	-	-	$0.12{ }_{-0,03}^{+0.05}$	-	1x M3
03	-	-	8.5	5	10.5	3.5	-	-	-		$0.15{ }^{+0.06}$	-	2x M3
$03{ }^{3)}$	-	-	8	4.3	10.3	3.5	-	-	-		$0.15{ }_{-0,05}^{+0.1}$	-	1x M3
04	2.2	$1.5{ }^{+0.05}$	15	8.4	17.5	6	-	-	-		$0.2{ }^{+0.1}$	M3	2x M3
$05^{3)}$	-	-	12	6	15	5	-	-	-		$0.2{ }_{-0,05}^{+0.1}$	-	1x M4
06	2.8	$1^{+0.05}$	17	8	20	6	8.5	15	29		$0.2^{+0.1}$	M3	2x M3
07	3	$1.2^{+0.05}$	20	9.5	23.5	7	10	13	35		$0.3{ }^{+0.1}$	M4	2x M4
09	4	$1.3{ }^{+0.05}$	25	12	29	7	10.6	20	37		$0.3{ }^{+0.1}$	M5	2x M5
11	5	$1.6{ }^{+0.05}$	30	14	35	11	13	22.5	43.5		$0.3{ }^{+0.1}$	M6	2x M6
14	6	$2.3{ }^{+0.05}$	40	16	46.5	15	16.5	29.5	53.5		$0.3{ }^{+0.1}$	M8	2x M8
16	6	$2.8{ }^{+0.05}$	40	16.5	47	15	-	-	-		$0.3{ }^{+0.1}$	M8	2x M8

[^1]
About the High Torque Line

The current High Torque Line is a complete re-design of the previous setup.

The new setup of the magnetic circuit excels by enormous benefits:

- Higher torque with appr. same size and power consumption
- Significantly extended operating temperature range in terms of operating voltage and torque from $-15^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ and optionally down to $-40^{\circ} \mathrm{C}$ possible
- High consistency of torque during the complete life cycle

Optimized geometry

By a new and patented arrangement of the poles and of the permanent magnet the magnetic flow is ideally controlled, resulting in the advantages mentioned.

Higher torque

While developing the High Torque Line we did not only succeed in increasing the braking torque (with roughly identical construction volume and identical electrical power input) but also in significantly improving the consistency of the torque over the whole life cycle.

Model types

86 611..K00

- Torque range from 0.4 to 300 Nm
- DC direct current
- Face mounting
- Single-disc brake (holding brake)
- Manual air gap adjustment

86 611..P00

- Torque range from 0.4 to 300 Nm
- DC direct current
- Face mounting
- Single-disc brake (holding brake)
- Automatic air gap adjustment

Applications

- Servomotors
- Robotics and automation
- Wind energy
- Safety engineering
- Optics and medical engineering

> We are happy to discuss your individual requirements and develop your specific version. Features as hub diameter, optional felt ring against lubricants, individual hub design or strand protection can be adapted.

General information

When planning the machine (e.g. motor) or plant as well as during setup, operation and maintenance of the component the operating instructions have to be observed. The components are manufactured, tested and designed according to the state of the art, in particular in accordance with the regulations for electromagnetic devices and components (DIN VDE 0580). In addition to the technical data in the data sheets you find comments in the operating instructions.

Permanent magnet single-disc brake

High Torque Line - Technical data

$86611 . . \mathrm{K00} ; 86611 . . \mathrm{P} 00$
24 VDC
IP 00
F
0.4 to 300 Nm
Please observe the general information on data sheets and the respective operating manuals. Design subject to change.

Size	Transmissible torque M_{4} [Nm]	Max. rotational speed$\begin{aligned} & \mathbf{n}_{\max } \\ & {\left[\mathrm{min}^{-1}\right]} \end{aligned}$	Max. switch. capacity$\begin{aligned} & P_{\text {max }} \\ & {[\mathrm{kJ} / \mathrm{h}]} \end{aligned}$	Max. switching energy $(Z=1)$ $\begin{aligned} & W_{\text {max }} \\ & {[\mathrm{kJ}]} \end{aligned}$	Rated power$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & {[\mathrm{~W}]} \end{aligned}$	Times		Inertia moment armature and flange hub J [kgcm ${ }^{2}$]	Weight m [kg]
						Coupling time (with parallel varistor)	Separation time		
						$\begin{aligned} & \mathbf{t}_{1} \\ & {[\mathrm{~ms}]} \end{aligned}$	$\begin{aligned} & \mathbf{t}_{2} \\ & \text { [ms] } \end{aligned}$		
03	0.4	10000	0.2	0.01	6	13	24	0.019	0.1
04	2.5	10000	0.6	0.03	9	20	35	0.09	0.25
05	5	10000	0.6	0.03	12	25	50	0.39	0.4
06	9	10000	6	0.3	15	25	60	0.55	0.65
07	10	10000	6	0.3	14	25	90	0.8	0.6
08	15	10000	18	0.9	18	29	130	1.35	1.15
09	22	10000	18	0.9	19	40	100	2.73	1.2
10	32	10000	28	1.4	22.5	60	200	4.1	1.86
11	60	10000	40	2	25	50	220	14.7	3.1
14	80	10000	106	5.3	36.5	65	280	27	4.4
16	140	6000	106	5.3	43	60	450	48.6	5.9
21	300	6000	200	10	41.8	300	350	200	13

(1) Strand diameter $\times\left[\mathrm{mm}^{2}\right]$

Type ...K00

Type ...P00

Exemplary illustration

Size	d	$\mathrm{d}_{1 \text { f9 }}$	d_{2}	d_{3}	d_{4}	b	b_{2}	b_{3}	t	t_{1}	a_{1}	a_{2}	a_{3}	a_{4}	$\mathrm{x}\left[\mathrm{mm}^{2}\right]$
03	32	32	9.6	27	-	19	5	400	3 x M3	-	20°	120°	-	-	0.25
04	44	44	14.9	35	31	18.6	5	400	$3 \times \mathrm{M} 3$	$3 \times \mathrm{M} 3$	20°	120°	20°	120°	0.25
05	55	56	23	42	35	23.8	5	400	4x M4	4x M4	20°	90°	20°	90°	0.25
06	65	65	23	48	42	23.8	5	400	4x M4	4x M4	70°	90°	45°	90°	0.25
07	72	72	27	54	42	23.5	5	400	4x M4	4x M4	20°	90°	70°	90°	0.25
08	82	82	27	54	42	28.6	5	400	$4 \mathrm{xM4}$	4x M4	20°	90°	70°	90°	0.25
09	92	92	32	72	62	27.7	5	550	$4 \times \mathrm{M} 5$	4x M5	20°	90°	0°	90°	0.25
10	102	100	44	83	72	36.5	5	800	4x M6	4x M6	20°	90°	0°	90°	0.25
11	122	120	48.5	83	72	38	5	800	4x M6	4x M6	0°	90°	70°	90°	0.25
14	140	134	56.5	97	83	40.8	5	750	$4 \mathrm{xM8}$	4x M8	20°	90°	0°	90°	0.25
16	160	160	63	120	97	44.8	5	1000	6x M5	4x M8	30°	60°	0°	90°	0.50
21	205	200	91	167	140	56.1	10	1000	6x M8	6x M8	30°	60°	60°	60°	0.50

Size	d_{5}	d_{6}	d_{7}	d_{8}	d_{9}	b_{4}	b_{5}	b_{6}	b_{7}	b_{8}	b_{9}	b_{10}	b_{11}	S	t_{2}	t_{3}
03	32	$4^{\text {1) }} / 8^{\text {2) }}$	14	-	-	8.5	5	10.5	3.5	-	-	-	-	$0.1^{+0.1}$	2x M3	-
04	42.8	$6^{1)} / 10^{2)}$	37			12	-	8.1	2.5	8.1	-	26.7		$0.15{ }^{+0.1}$	3x M3	-
05	56	$12^{\text {1) }} / 17.2^{\text {2) }}$	56			16	-	10.7	3.6	10.7	-	34.5		$0.2^{+0.1}$	3 x M4	-
06	63	$12^{\text {1) }} / 18^{\text {2) }}$	51.5			18	4.8	10.5	3.5	10.5	-	34.2		$0.2+0.1$	3 x M4	-
07	69.5	$12^{\text {1) }} / 20.2^{\text {2) }}$	38			17	7.3	15.3	4	7.3	10.6	30.8		$0.2+0.1$	3 x M5	3 x M5
08	80	$16^{\text {1) }} / 20.2^{\text {2) }}$	40			17.5	7.4	15.5	4.1	7.4	10.4	35.8		$0.3^{+0.1}$	3 x M5	3 x M5
09	90	$18^{\text {1) }} / 26.2^{\text {2) }}$	48			27.5	10	20	5	10	14.5	37.9		$0.27^{+0.1}$	3x M6	3x M6
10	100	$25.2{ }^{\text {1) }} / 36^{\text {2) }}$	85			30	-	15.2	5	15.2	-	51.9		$0.3^{+0.1}$	3x M6	-
11	121	$28{ }^{\text {1) }} / 36^{\text {2) }}$	94			40	-	22	7	14	20	52.2		$0.4^{+0.1}$	3x M8	3x M10
14	138	$35^{\text {1) }} / 40.2^{\text {2) }}$	78			41.3	15.5	28.8	7.3	15.5	22	56.5		$0.3^{+0.1}$	3 M 10	3x M10
16	160	$30^{1)} / 45.5{ }^{\text {2) }}$	90			39	15.5	29.5	8	29.5	-	74.5		$0.3^{+0.1}$	3 x M10	-
21	202	$36{ }^{\text {1) }} / 65.2^{\text {2) }}$	195			59	-	24.3	-	24.3	31	79.5		$0.4{ }^{+0.1}$	-	3x M12

[^2][^3][^4]
Classic permanent magnet brake vs. High Torque

Features

Residual torque-free
Higher torque
High power density
Optimized magnet system
Wear-free operation in all mounting positions
Torque consistency and operating voltage range

Operating temperature range

Easy, stress-free mounting
Application is easy to service

PM Line	High Torque Line
++	++
+	++
+	++
+	++
++	++
+	Standard $-15^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ (Optional $-40^{\circ} \mathrm{C}$ to $\left.+120^{\circ} \mathrm{C}\right)$
(+ +	
Standard $-5^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	++
++	
+	

General technical information

List of abbreviations

M_{4}	[Nm]	Transmissible torque: highest torque that can be applied to the closed brake before slippage occurs. If only static load is applied to brakes M_{4} is referred to as nominal torque.
$\mathrm{n}_{\text {max }}$	[min^{-1}]	Maximum rotational speed of motor shaft resp. armature system.
$\mathrm{P}_{\text {max }}$	[kJ / h]	Highest switching performance: Permissible switching work converted to heat per time unit.
$\mathrm{W}_{\text {max }}$	[kJ]	Highest switching work: maximum switching work permitted to load the brake.
Z	[h^{-1}]	Switching frequency: number of switching operations evenly distributed over one hour.
U_{N}	[VDC]	Nominal voltage: designation or identification of allocated supply voltage with voltage coils.
P_{N}	[W]	Nominal voltage: rounded value of coil capacity at nominal voltage referred to $20^{\circ} \mathrm{C}$.
t_{1}	[ms]	Coupling time: Sum of response delay t_{11} and rise time t_{12}.
t_{11}	[ms]	Response delay: time from switching off current to start of torque increase.
t_{12}	[ms]	Rise time: time from start of torque rise until 90% of torque is reached.
t_{2}	[ms]	Separation time: sum of response delay t_{21} and release time t_{22}.
t_{21}	[ms]	Response delay: time from switching on current to start of torque decrease.
t_{22}	[ms]	Decrease time: time from start of torque decrease until 10% of nominal torque is reached.
J	$\left[\mathrm{kgcm}^{2}\right]$	Moment of inertia of armature system and flange hub.
s	[mm]	New air gap in new condition.
$\mathrm{S}_{\text {Bmax }}$	[mm]	Maximum permitted operating air gap until maintenance of brake.

Operation

All given performance data always refer to the operating mode S1, in particular to the specified maximum temperature of the operating range of the brake. This corresponds to a permanent current feed of the brake until the steady-state temperature has been reached. In short-term operation S2 and intermittent operation S3 the performance data increases significantly.

Notes on the technical data

$\mathrm{W}_{\max }$ (maximum switching work) is the switching work which must not be exceeded with braking processes from max. $3000 \mathrm{~min}^{-1}$. Braking processes from rotational speeds $>3000 \mathrm{~min}^{-1}$ significantly reduce the maximum permitted switching work per switching. In this case it is required to consult the manufacturer. The maximum switching performance Pmax is the switching work W which can be implemented in the brake per hour. The permitted number of switchings (emergency stops) Z per hour with holding brakes and the resulting max. permitted switching work Wmax is to be taken from the technical data and the respective operating instructions. In case of deviating applications, e.g. as a working brake, the manufacturer needs to be consulted. The values $P_{\max }$ and $W_{\max }$ are standard values. They are valid for installation without additional cooling. The coupling time t_{1} is achieved with operation at 110% of the rated voltage, maximum air gap $\mathrm{s}_{\mathrm{Bmax}}$, operational temperature $\left(120^{\circ} \mathrm{C}\right)$ and operation with a suitable varistor. The separation time t_{2} is achieved with operation at 90% of the rated voltage, smallest new air gap s and at operational temperature $\left(120^{\circ} \mathrm{C}\right)$. The values given for the times are maximum values. The coupling time t_{1} and the separation time t_{2} are valid for DC-switching of the brake. In case of $A C$-switching of the brake the coupling time t_{1} rises significantly. The specified transmissible torques M_{4} signify the components in their minimum transmissible torque (statistical evaluation). Depending on the application the actually acting transmissible torque M_{4} deviates from the values indicated for the transmissible torque M_{4}. In case of oily, greasy or badly contaminated friction surfaces the transmissible torque M_{4} may be reduced. All technical data are valid with due observance of the run-in conditions (see respective operating instructions) of the brake determined by the manufacturer.

When operating the permanent magnet single-disc brake the nominal operating conditions acc. DIN VDE 0580 must be observed! Please observe data sheet, operating instructions and the technical notes in the technical customer document!

Design subject to change!

[^0]: ${ }^{1)}$ Pure holding brake

[^1]: ${ }^{1)}$ Min. bore
 ${ }^{2}$) Max. bore
 ${ }^{3)}$ Anchor dimensions for type 14.120.xx. 2 xx and $x x$ 14.120.xx. 1 (without illustrations - drawings on demand)

[^2]: ${ }^{1)}$ Min. bore

[^3]: ${ }^{2)}$ Max. bore

[^4]: Dimensions in mm

